克勞修(xiu)斯引入了熵(shang)的概念來(lai)描述(shu)這(zhe)種(zhong)不可逆過程。
在熱力學中,熵是(shi)系統的狀態函數,它的物理表達式為(wei):
S =∫dQ/T或ds = dQ/T
其中,S表(biao)示熵(shang),Q表(biao)示熱量,T表(biao)示溫(wen)度。
該表達(da)式的(de)物(wu)理含義(yi)是:一(yi)個系(xi)統的(de)熵(shang)等于該系(xi)統在一(yi)定過程(cheng)中(zhong)所吸收(或耗散)的(de)熱量除以它的(de)絕對溫(wen)度(du)。可以證明,只要有熱量從系(xi)統內(nei)的(de)高溫(wen)物(wu)體(ti)流向低溫(wen)物(wu)體(ti),系(xi)統的(de)熵(shang)就會增加:
S =∫dQ1/T1+∫dQ2/T2
假設dQ1是高溫物體的(de)熱增量,T1是其絕對溫度(du);
dQ2是低(di)溫物體的熱增量,T2是其絕對溫度,
則:dQ1 = -dQ2,T1>T2
于是上式推演為:S = |Q2/T2|-|Q1/T1| > 0
這種熵增(zeng)是一(yi)個自(zi)發的(de)不可逆過程,而(er)總(zong)熵變總(zong)是大(da)于零。
孤立系(xi)統(tong)總是趨向于熵(shang)(shang)(shang)增(zeng),最終達(da)(da)到熵(shang)(shang)(shang)的(de)(de)最大狀態(tai)(tai),也就(jiu)是系(xi)統(tong)的(de)(de)最混(hun)亂無(wu)序狀態(tai)(tai)。但(dan)是,對開放系(xi)統(tong)而(er)言,由于它可(ke)以(yi)將內部(bu)能(neng)(neng)量交換(huan)產生的(de)(de)熵(shang)(shang)(shang)增(zeng)通過向環境(jing)釋放熱量的(de)(de)方式(shi)轉移,所以(yi)開放系(xi)統(tong)有可(ke)能(neng)(neng)趨向熵(shang)(shang)(shang)減而(er)達(da)(da)到有序狀態(tai)(tai)。
熵增的(de)熱(re)力(li)學(xue)理論與(yu)幾(ji)率學(xue)理論結合,產(chan)生(sheng)形而(er)上(shang)的(de)哲學(xue)指導(dao)意義:事物的(de)混亂程度越(yue)高,則其幾(ji)率越(yue)大。
現代科學還用(yong)(yong)信(xin)(xin)(xin)息這個概念來(lai)(lai)表示(shi)系(xi)統(tong)(tong)的(de)(de)(de)有序程(cheng)度(du)(du)。信(xin)(xin)(xin)息本來(lai)(lai)是(shi)通(tong)訊理論中(zhong)的(de)(de)(de)一(yi)個基(ji)本概念,指的(de)(de)(de)是(shi)在通(tong)訊過程(cheng)中(zhong)信(xin)(xin)(xin)號不確(que)定性(xing)(xing)的(de)(de)(de)消除。后來(lai)(lai)這個概念推廣到一(yi)般系(xi)統(tong)(tong),并將信(xin)(xin)(xin)息量(liang)看作一(yi)個系(xi)統(tong)(tong)有序性(xing)(xing)或組織(zhi)程(cheng)度(du)(du)的(de)(de)(de)量(liang)度(du)(du),如果一(yi)個系(xi)統(tong)(tong)有確(que)定的(de)(de)(de)結(jie)構(gou),就意味著(zhu)它已經包含著(zhu)一(yi)定的(de)(de)(de)信(xin)(xin)(xin)息。這種信(xin)(xin)(xin)息叫做(zuo)結(jie)構(gou)信(xin)(xin)(xin)息,可用(yong)(yong)來(lai)(lai)表示(shi)系(xi)統(tong)(tong)的(de)(de)(de)有序性(xing)(xing);結(jie)構(gou)信(xin)(xin)(xin)息量(liang)越(yue)大,系(xi)統(tong)(tong)越(yue)有序。因此(ci),信(xin)(xin)(xin)息意味著(zhu)負熵、反熵增或熵減。